ERK1/2-mediated Cytoplasmic Accumulation of hnRNPK Antagonizes TRAIL-induced Apoptosis through Upregulation of XIAP in H1299 Cells.

نویسندگان

  • Wen Si Huang
  • Feng Mei Xu
  • Qing Zhong Zeng
  • Xiao Hui Liu
  • Xue Juan Gao
  • Lang Xia Liu
چکیده

OBJECTIVE Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) resistance greatly limits the clinical therapeutic efficacy of TRAIL. Elucidating the molecular mechanism underlying TRAIL resistance will be fundamental to resolving this problem. METHODS Nuclear and cytoplasmic protein extraction and immuno?uorescence (IF) assay were used to detect changes in heterogeneous nuclear ribonucleoprotein K (hnRNPK) localization in H1299 cells. The evaluation of cell apoptosis in cells transfected with GFP-hnRNPK, GFP-hnRNPK S284/353A, or GFP-hnRNPK S284/353D mutant was performed using cleaved caspase-3 antibody. The gene expression of XIAP was tested by quantitative RT-PCR. RESULTS Previously, we reported that hnRNPK antagonized TRAIL-induced apoptosis through inhibition of PKC-mediated GSK3β phosphorylation. In this study, we further demonstrate that TRAIL treatment induces cytoplasmic accumulation of hnRNPK in H1299 cells. The hnRNPK localized in the cytoplasm has a higher capacity to antagonize TRAIL-induced apoptosis. Both ERK1/2 signaling inhibitor U0126 and ERK-phosphoacceptor-site mutant (GFP-hnRNPK S284/353A) diminish cytoplasmic accumulation of hnRNPK induced by TRAIL. Moreover, we show that XIAP is involved in hnRNPK-mediated TRAIL resistance in H1299 cells. CONCLUSION Taken together, these results give new insights into the understanding of the molecular mechanism associated with TRAIL resistance in lung adenocarcinoma.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Silibinin sensitizes TRAIL-mediated apoptosis by upregulating DR5 through ROS-induced endoplasmic reticulum stress-Ca2+-CaMKII-Sp1 pathway

In this study, we addressed how silibinin enhances tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mediated apoptosis in various cancer cells. Combined treatment with silibinin and TRAIL (silibinin/TRAIL) induced apoptosis accompanied by the activation of caspase-3, caspase-8, caspase-9, and Bax, and cytosolic accumulation of cytochrome c. Anti-apoptotic proteins such as Bcl-2, ...

متن کامل

hnRNPK inhibits GSK3β Ser9 phosphorylation, thereby stabilizing c-FLIP and contributes to TRAIL resistance in H1299 lung adenocarcinoma cells

c-FLIP (cellular FLICE-inhibitory protein) is the pivotal regulator of TRAIL resistance in cancer cells, It is a short-lived protein degraded through the ubiquitin/proteasome pathway. The discovery of factors and mechanisms regulating its protein stability is important for the comprehension of TRAIL resistance by tumor cells. In this study, we show that, when H1299 lung adenocarcinoma cells are...

متن کامل

Cellular inhibitor of apoptosis 1 (cIAP-1) degradation by caspase 8 during TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis.

TNF-related apoptosis-inducing ligand (TRAIL) is a potential chemotherapeutic agent with high selectivity for malignant cells. Many tumors, however, are resistant to TRAIL cytotoxicity. Although cellular inhibitors of apoptosis 1 and 2 (cIAP-1 and -2) are often over-expressed in cancers, their role in mediating TRAIL resistance remains unclear. Here, we demonstrate that TRAIL-induced apoptosis ...

متن کامل

Chetomin induces degradation of XIAP and enhances TRAIL sensitivity in urogenital cancer cells.

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is one of the most promising anti-cancer agents, but some tumor types develop resistance to TRAIL. Here, we report that chetomin, an inhibitor of hypoxia-inducible factors, is a potent enhancer of TRAIL-induced apoptosis. TRAIL or chetomin alone weakly induced apoptosis, but the combination of chetomin and TRAIL synergistically ind...

متن کامل

Downregulation of X-linked inhibitor of apoptosis protein by ‘7-Benzylidenenaltrexone maleate’ sensitizes pancreatic cancer cells to TRAIL-induced apoptosis

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a potential biological anticancer agent. However, a wide range of human primary cancers, including pancreatic cancer, display resistance to apoptosis induction by TRAIL. Therefore, this resistance needs to be overcome to allow TRAIL to be successfully used in cancer therapy. In this study, we performed a compound screen to isola...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomedical and environmental sciences : BES

دوره 30 7  شماره 

صفحات  -

تاریخ انتشار 2017